The Brick Line Survey in 2024

Alyssa Bulatek (she/her) Committee: Adam Ginsburg, Desika Narayanan, Jaehan Bae, and John Stanton (UF Chemistry) "no problem....."

November 7, 2024 Graduate Symposium

PREVIDUSLY IN

Dasar spectral extraction (Fall 2023)

What has happened since then?

- Continuum imaging
- Line cataloging
- Unsuccessful ALMA proposal writing
- GBT MUSTANG-2 observing/GBO colloquium-giving
- Line cataloging (with improved procedures)
- ACES workshop attending
- Line catalog completing*? big if true

What has happened since then?

- Continuum imaging
- Line cataloging
- Unsuccessful ALMA proposal writing
- GBT MUSTANG-2 observing/GBO colloquium-giving
- Line cataloging (with improved procedures)
- ACES workshop attending
- Line catalog completing*? big if true

Continuum imaging

B3

Improved cataloging procedures

February 20, 2024

Try tight_layout for plots to make them readable :-)

Adam says: stick to this region (the frown) for more ide Do SiO next. Then do the rest of the molecules!

molmodel.py LTE modeling code suite

- Pulls from JPL and CDMS catalogs
 - Function to list molecule tags—no more name confusion!
- Can extract spectrum from a coordinate or a region (.FITS) file
 - Can model line-by-line or spw-by-spw
- Can fetch only lines above (below) user-specified A_{ii} (E_U) cutoffs
- **Optional features**
 - Plot 2-sigma level for upper limit measurement
 - Calculate N_uppers for rotational diagrams

Ln 16, Col 17 Spaces: 4 mol_model.py

Molecular inventories of the maser core and The Frown (with initial LTE model fits)

A bunch of molecules (initial fits)

Complex organic molecules (initial fits)

me trying to fit LTE models to spectra of diatomic molecules

463012635

the gift of subthermal excitation

What else will go in this paper?

Remaining deliverables for Paper II (BLS I)

- Analysis: one big model with all molecules, LTE modeling
 - One ID for every line; corrected molecular catalog and LTE fits (with errors on params)
 - List of unidentified lines
- Analysis: doing calculations with the measurements
 - Notes on each molecule; abundance constraints from column densities
 - Doing science; e.g., deriving the chemical history of the cores using SO and SO₂
 - Isotope ratios; e.g., ¹²C to ¹³C ratio
- Discussion: comparison between regions (measure X-factors)

Things that might not be in this paper

- Inventories of the other cores identified in continuum images
- non-LTE modeling for subthermally-excited molecules
- Other things we figure out along the way that we don't have time to include in the paper

Thanks for your time!

Longwave/narrowband JWST NIRCam image courtesy of Adam

