Which lines trace what physical processes in the Galactic Center? Building a toolkit, brick by Brick

Galactic Center (Spitzer IRAC) Image credit: NASA, JPL-Caltech, Susan Stolovy (SSC/Caltech) et al.

Alyssa Bulatek (she/her)

Advisor: Adam Ginsburg Collaborators: Katharina Immer, Desmond Jeff October 1, 2021 Graduate Symposium

Which lines trace what physical processes in the Galactic Center?

Galactic Center (Spitzer IRAC) Image credit: NASA, JPL-Caltech, Susan Stolovy (SSC/Caltech) et al.

Building a toolkit, brick by Brick

Alyssa Bulatek (she/her)

Advisor: Adam Ginsburg Collaborators: Katharina Immer, Desmond Jeff October 1, 2021 Graduate Symposium

The Interstellar Medium

Why do we care about the ISM?

- The most important and beautiful component of a galaxy (imo, and: Draine 2011)
- The ISM is where star formation happens
- Submillimeter emission from gas and dust in the ISM is an important tool for studying star formation
 - Physical properties (e.g. temperature, density)
 - Physical processes (e.g. shocks, jets, cores)

- **desika** 7 days ago
- i'm so glad you all have finally come around to see the truth that all astrophysics is really just physics of the ISM

Narayanan 2021*

Mogelar Fingentins

Where do our "rules of thumb" fail?

- Several molecules are widely used as heuristic tracers for different ISM processes
 - Outflows: CO, SiO
 - Hot cores: CH₃OH, CH₃CN
 - Shocks: SiO, HNCO
 - Dense gas: HCN, HCO+
- Problem: all of these molecules are *widespread* in the Central Molecular Zone
 - These molecules don't uniquely trace processes... they trace everything!

The Brick is the prototypical dense but low-SF cloud

- Need unique tracers
- **G0.253+0.015** ("The Brick") contains examples of four ISM processes:
 - Protostellar outflows
 - Pre- and protostellar cores
 - Turbulent shocks
 - Diffuse, quiescent molecular gas
- ALMA proposal: wideband (4:1) spectral line survey
 - **Goal:** build a toolkit of tracers that *uniquely* identify these processes, for use in the CMZ and intensely star-forming galaxies

Rathborne+2015 and Walker+2021

How many lines are in the delivered data?

Used to validate spectral setup of ACES ALMA Large program Hope to cover entire bandwidth (incl. missing portion) w/ ACA obs.

Alyssa Bulatek

Identifying Spectral Lines

Which lines are in The Brick?

- "Max" spectra
- Small molecules and isotopologues
 - H¹³CN, H¹³CO+, HN¹³C, CCH, H₂CS, NH₂D
- CH₃CCH, CS, CO, HNCO
- Masers (SiO v=1, class I methanol)
- Collaborating w/ Katharina Immer (Leiden) to cover all spectral windows

Rotational Diagrams

How do temperature and density vary in The Brick?

- Seven CH₃CN ladders in delivered data
 - Other temperature-sensitive molecules: CH₃OH, CH₃CCH, etc.
- J = 8 ladder, T ~ 165 K (same pointing from Walker+2021: 167 K)
- Repeat for other *J* ladders, repeat across cloud (map)
- Constrain cloud properties:
 - Temperature
 - Column density
 - Volume density

Rotational Diagrams

How do temperature and density vary in The Brick?

- Seven CH₃CN ladders in delivered data
 - Other temperature-sensitive molecules: CH₃OH, CH₃CCH, etc.
- J = 8 ladder, T ~ 165 K (same pointing from Walker+2021: 167 K)
- Repeat for other J ladders, repeat across cloud (map)
- Constrain cloud properties:
 - Temperature
 - Column density
 - Volume density

What are the next steps?

- "First results" paper
 - Line identification
 - Fix temperature/density map
- Moment maps
 - What structures can we associate with certain molecules?
 - Compare w/ Petkova+2021 simulated obs. of The Brick
- Defining regions
 - What structures are associated with known cores, outflows, shocks, and regions of diffuse gas (and what unique tracers do we see there?)

What are the next steps?

- "First results" paper
 - Line identification
 - Fix temperature/density map
- Moment maps
 - What structures can we associate with certain molecules?
 - Compare w/ Petkova+2021 simulated obs. of The Brick
- Defining regions
 - What structures are associated with known cores, outflows, shocks, and regions of diffuse gas (and what unique tracers do we see there?)

Thank you!

The Brick (Spitzer IRAC/MIPS) Image credit: NASA, JPL-Caltech, and S.V Ramirez (NExScl/Caltech)

References

- Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton University Press)
- Petkova, M. A., Kruijssen, J. M. D., Kluge, A. L., et al. 2021, <u>arXiv:2104.09558</u>
- Rathborne, J. M., Longmore, S. N., Jackson, J. M., et al. 2015, ApJ, 802, 125. <u>doi:10.1088/0004-637X/802/2/125</u>
- Walker, D. L., Longmore, S. N., Bally, J., et al. 2021, MNRAS, 503, 77. <u>doi:10.1093/mnras/stab415</u>
- "ISM is the best" chat and meme courtesy of arXiv Coffee participants, Sidney Lower, Rachel Losacco, and Desika Narayanan
- Center of the Milky Way (Spitzer): <u>https://www.nasa.gov/</u> <u>multimedia/imagegallery/image_feature_1439.html</u>
- ALMA Receivers: <u>https://www.eso.org/public/teles-instr/</u> <u>alma/receiver-bands/</u>
- Brick (Spitzer): <u>https://webbtelescope.org/contents/news-</u> releases/2020/news-2020-14
- Headings: <u>https://www.makewordart.com/</u>