Designing and testing an ultra-wideband receiver for the Green Bank Telescope

Alyssa Bulatek (Macalester College)

August 8, 2019

Green Bank Observatory REU 2019

Overview

Motivation

Radio receivers

Characterizing receiver efficiency

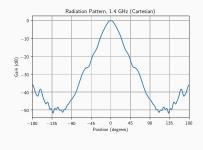
Waveguide window

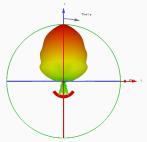
Conclusions and future work

Motivation

Motivation

- NANOGrav times pulsars to find gravitational waves
- Pulsar signals subject to dispersion
 - Lower frequency light delayed more, arrives after higher frequencies
- Need pulsar TOA measurements at widely-spaced frequencies
- Currently requires using multiple receivers at different times, which reduces timing accuracy

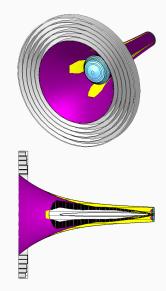

Project Goal


Design and build a receiver to perform wide-band pulsar timing measurements simultaneously, which will improve the sensitivity of pulsar timing observations with the GBT.

Radio receivers

Antennas, Gain, and Electromagnetic Reciprocity (oh my!)

- An antenna is a device which converts EM waves in free space into electric current in a conductor
- Gain as a function of position (3D) is the far-field radiation pattern
- Receivers can be treated as transmitters to make our calculations and conceptualizations easier



Design and Specifications

Frequencies: 0.7 - 4.2 GHz Bandwidth: 3.5 GHz (6:1) Dimensions: 1.5 m \times 1 m

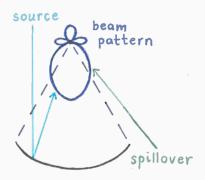
- Ridges lower the lowest receivable frequency
- Corrugated skirt reduces spillover at lower frequencies
- Dielectric spear reduces under-illumination at higher frequencies

Characterizing receiver efficiency

Receiver Efficiency

- Feed efficiency (*e*_{tot}) is proportion of radiation incident on telescope that gets received by feed
 - Depends on frequency, important to characterize
- Total feed efficiency can be broken up into subefficiencies

$$e_{tot} = e_{sp} \cdot e_{ill} \cdot e_{pol} \cdot e_{ph}$$

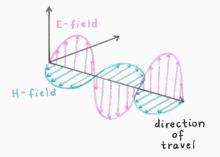

where

 $e_{sp} = \text{spillover efficiency}$ $e_{ill} = \text{illumination efficiency}$ $e_{pol} = \text{cross-polarization efficiency}$ $e_{ph} = \text{phase efficiency}$

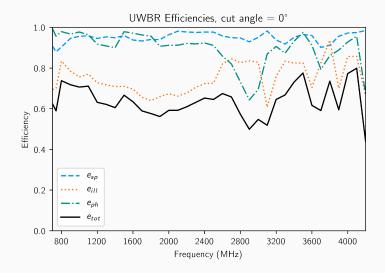
Design Goal

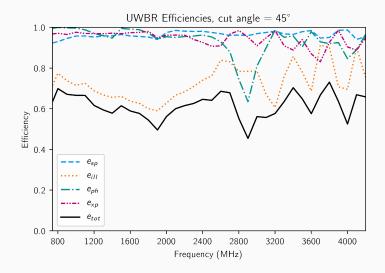

 $e_{tot} = 60-70\%$ at lower ν , 50% at higher ν .

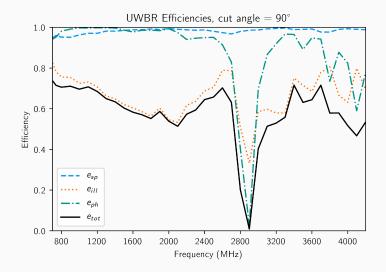
- Receiving, **spillover** is radiation accepted from beyond the edge of the dish
- Transmitting, spillover is radiation that "spills over" the edge of the dish



Illumination Efficiency


- \rightarrow **Balance** between spillover and illumination
 - Transmitting, the dish is not uniformly illuminated by the antenna (it falls off/tapers towards the edge of the dish)
 - -17 dB is optimum


 Transmitting, fields generated by feed interact destructively at aperture

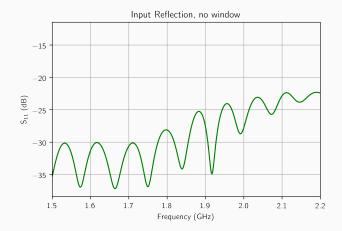

Efficiencies from Model

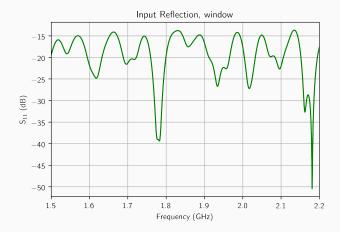
Efficiencies from Model

Efficiencies from Model

Waveguide window

Waveguide Window


- Receiver will be cooled with He to 15 K
- Radio-transparent window on front of dewar
 - Layers of fused quartz fabric bonded with optical epoxy
 - Vacuum infusion
- Large vacuum force on window (~20,000 lbs)
 - Window must be curved


Reflections

 $S_{11} = rac{ ext{reflected signal}}{ ext{transmitted signal}}$

Reflections

$$S_{11} = \frac{\text{reflected signal}}{\text{transmitted signal}}$$

Conclusions and future work

Conclusions

- UWBR meets efficiency goals in its "frozen" design state.
- Window has minor effect on circuit properties of feed horn.

Future Work

- Characterizing and building a digital model of differential amplifier (LNAs, notch filters, hybrid combiner)
- Testing loss characteristics of window (also destructive test)
- GBT memo to address varying edge angle of reflector
- Modal-based analysis of radiation patterns (Honors thesis)

Thank you!

Acknowledgements and References

- Steve White
- Bob Simon
- Sivasankaran Srikanth (CDL)
- Lisa Locke (CDL)
- Dr. Ryan Lynch
- The other summer students
- Everyone at GBO
- John Cannon (Macalester)

- Beukman, T. S., Meyer, P., Ivashina, M. V., et al. 2016, ITAP, 64, 1615
- 2. Collin, R. E. 1984, ITAP, 32, 997
- Condon, J. J., & Ransom, S. M. 2016, Essential Radio Astronomy (Princeton, NJ: PUP)
- 4. Kildal, P.-S. 1985, ITAP, 33, 903
- Lorimer, D. R., & Kramer, M. 2005, Handbook of Pulsar Astronomy (Cambridge, UK: CUP)
- The NANOGrav Collaboration, Arzoumanian, Z., Brazier, A., et al. 2015, ApJ, 813, 65
- 7. Norrod, R. & Srikanth, S. 1996, GBT Memo 155
- Simon, R. J. 2005, NRAO Electronics Division Internal Report 315